UNITED NATIONS-NEW YORK 2009, April 16 (Endangered Fauna).

	42c	Parnassius apollo L., APOLLO	PAP	Papilioninae			
	42c	Rosalia alpina L., ROSALIA LONGHORN	CER	Cerambycinae			
	42c	Formica rufa L., SOUTHERN WOOD ANT	FOR	Formicinae			
	42c	Anax imperator Leach, EMPEROR DRAGONFLY	AES	Aeshninae			
UNITED NATIONS-VIENNA 2009, April 16 (Endangered Fauna).							
	65c	Troides brookiana Wallace,					
		RAJAH BROOKE'S BIRDWING	PAP	Papilioninae			
	65c	Pandinus imperator Koch, EMPEROR SCORPION	Scorpionida	e Scorpioninae			
	65c	Carabus intricatus L., BLUE GROUND BEETLE	CAR	Carabinae			
	65c	Brachypelma smithi Picard-Cambridge,					
		MEXICAN RED-KNEE TARANTULA T	Theraphosidae	Theraphosinae			
VANUAT	ГU	2009, January 28 (Romance in Vanuatu).					
961-62	90v	Bride & groom, BUTTERFLY		Lepidoptera			

It is time for the annual report on insect new issues. In calendar 2008 we had a drastic drop in the number of new insect stamps. I measure the number of new issues by the height of the stack of 3x5 index cards, one per stamp, that I accumulate each year. (20mm = about 100 cards). Local and known illegal issues are not included.

1996	80 mm = ~ 400 stamps	2002	122 mm = ~ 610 stamps
1997	119mm = ~595 stamps	2003	91 mm = ~ 455 stamps
1998	125mm = ~625 stamps	2004	54 mm = ~ 270 stamps
1999	133mm = ~665 stamps	2005	68 mm = ~ 340 stamps
2000	165mm = ~825 stamps	2006	63 mm = ~ 315 stamps
2001	191mm = ~955 stamps	2007	$62mm = \sim 310$ stamps
	2008 37mm = -18	35 stamps	

The Emerald Cockroach Wasp

This may be a strange name for a wasp but its life is even stranger. The wasp, *Ampulex compressa* Fabricius, is a shiny green member of the small wasp family Ampulicidae. The emerald cockroach wasp can be found on the following stamps:

Malaysia, #441 and 441a, 1991, \$1 St. Helena #366, 1982, 25p

The adult females of many wasps seek as food for their larvae an insect or spider to sting, paralyze and serve as a site for egg-laying. However, this wasp uses only cockroaches for its prey and does so in a unique method.(1) The wasp first stings the cockroach, aiming at a ganglion in the thorax. This temporarily paralyzes the roach for a few minutes, allowing the second sting to be carefully directed into the brain cells that control the escape reflex. This is accomplished by the use of sensitive detectors on the stinger. After the cockroach recovers from the first sting, it no longer can make any attempt to escape but can walk normally.

The wasp then bites off the thin distal end of one antenna, drinks from the hemolymph that leaks out and then uses the sturdy antenna stump as a leash to lead the cockroach to the wasp's burrow, as one would lead a dog on a leash. Here the wasp lays an egg on the cockroach and seals the burrow. This fascinating act can be seen in a video clip at

youtube.com/watch?v=AkpHQh1K9MU.

When the egg hatches, the larva chews its way into the body cavity of the roach. It then proceeds to devour the organs of the roach in a specific order so as to keep the roach alive for the eight days it takes for the larva to develop. The larva then forms a cocoon in the abdomen of the roach and emerges as a wasp a month later. (2,3)

Researchers at the University of North Carolina (4) have shown that the wasp venom blocks the action of the neurotransmitter octopamine which is involved in complex behaviors such as walking. By injecting the cockroach with a reactivator of octopamine in the central nervous system, they found they could restore normal activity in the cockroaches. Injection with an octopamine blocker produced the same effect as did the wasp sting.

- 1. www.en.wikipedia.org/w/index.php?title=ampulicidae&printable=yes
- 2. ampulex compressa (thing)@everything2.com/node/1784588
- 3. www.boingboing.net/2006/02/03/wasp-performs-roachb.html
- 4. www.med.unc.edu/www/incoming-news/0db0a79554af26d5c069d69090559a8a